Chapter 9: Fat-Tailed Regression Models

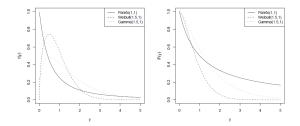
Peng Shi

Northern Illinois University

2013 Ratemaking and Product Management Seminar March 11-13, 2013

Peng Shi (Northern Illinois University)

Fat-Tailed Regression


2013 CAS RPM Seminar 1 / 12

< < >>

- Introduction
- Regression Models
 - Transformation
 - Exponential Family
 - Parametric Regression
 - Quantile Regression

Introduction

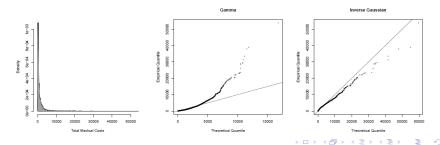
- Claims data often presents fat-tails: auto, home, medical costs ...
- Fat-tailed Distribution
 - The frequency of extreme events is higher than that implied by the normal distribution
 - · Alternative term: heavy-tailed or long-tailed

Peng Shi (Northern Illinois University)

Introduction

Tail measure

$$\lim_{y \to +\infty} \frac{\Pr(Y_1 > y)}{\Pr(Y_2 > y)} = \lim_{y \to +\infty} \frac{\overline{F}_{Y_1}(y)}{\overline{F}_{Y_2}(y)} = \lim_{y \to +\infty} \frac{f_{Y_1}(y)}{f_{Y_2}(y)}$$


- A limiting value of zero of the ratio indicates that the distribution of Y₂ has a heavier tail than that of Y₁
- Example

$$\lim_{y \to +\infty} \frac{\bar{F}_{Weibull}(y)}{\bar{F}_{Pareto}(y)} = \lim_{y \to +\infty} \frac{\exp(-(y/\lambda)^{\tau})}{\theta^{\alpha}(y+\theta)^{-\alpha}} = 0$$

Peng Shi (Northern Illinois University)

Parametric Regression

- Two special cases:
 - Transformation: e.g. log
 - Exponential family: gamma
- Motivating example: Medical care expenditure
 - · Look at individual medical care expenditure for office-based visit
 - Covariates include social economic charateristics, health status, employment etc.

Peng Shi (Northern Illinois University)

Fat-Tailed Regression


2013 CAS RPM Seminar 5 / 12

Parametric Regression

- General distributions
 - Consider transformation

$$\ln \mathbf{Y} = \mu + \sigma \ln \frac{B(\phi_1, \phi_2)}{1 - B(\phi_1, \phi_2)}$$

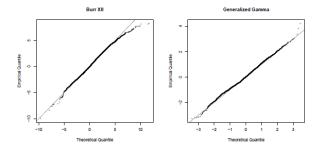
- Y is known to follow a GB2 distribution denoted by $GB2(\mu, \sigma, \phi_1, \phi_2)$
- Many special cases, including GG and Burr XII

Multivariate Regression

- Examples
 - · Claims of different type in auto insurance
 - Claims in multi-perils in homeowner insurance
 - · Medical costs by physician and non-physician
- Copula regression
 - A copula is a multivariate joint distribution with all marginal follows uniform distribution on interval [0, 1]

$$C(u_1,\cdots,u_d)=\Pr(U_1\leq u_1,\cdots,U_d\leq u_d)$$

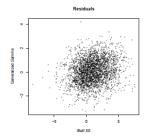
• According to Sklar's theorem, for any multivariate distribution F with continuous marginals F_1, \dots, F_d , there exists a copula C such that


$$F(y_1,\cdots,y_d)=C(F_1(y_1),\cdots,F_d(y_d))$$

Allows for flexible distributions for the marginal models while accommodates association

Peng Shi (Northern Illinois University)

Medical Costs Example


- Again consider individual medical care costs of office-based visits
- Break down into two categories: doctor v.s. non-doctor
- Consider a bivariate copula regression
 - Burr XII for doctor and generalized gamma for non-doctor

Peng Shi (Northern Illinois University)

Medical Costs Example

Residuals

· Use Gaussian copula to join two marginals

 $f(y_1, y_2) = c(F_1(y_1), F_2(y_2))f_1(y_1)f_2(y_2)$

• The estimated association parameter ρ is about 0.25

Quantile Regression

• Linear model

$$\mathbf{y} = \mathbf{x}' \boldsymbol{\beta} + \varepsilon, \ \varepsilon \sim \mathbf{F}$$

• Consider the quantile function $Q_{\tau}(y|\mathbf{x}) = \mathbf{x}' \beta(\tau)$ with $0 < \tau < 1$, the regression coefficient $\beta(\tau)$ can be found by solving

$$\hat{\boldsymbol{\beta}}(\tau) = \operatorname*{arg\,min}_{\boldsymbol{\beta}\in\mathbb{R}^p} \sum_{i=1}^n \rho_{\tau}(\boldsymbol{y}_i - \boldsymbol{x}'_i \boldsymbol{\beta})$$

• $ho_{ au}(u) = u(au - I(u \le 0))$ is known as the check function

Use for skewed data and data with heteroscedasticity

Peng Shi (Northern Illinois University)

.

Quantile Regression

Medical Costs Example: Revisit

msa

factor(health)3

black

limitation

asian

chronic

edu

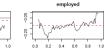
familysize

factor(health)2

0.2 0.4 0.6 0.8

0.8 1.0

0.8 1.0


0.12

8

0.0 0.2

0.25

0.0 0.2 0.4 0.6 0.8 1.0

Peng Shi (Northern Illinois University)

0.10 0.00

0.0

 ▲ □ → ▲ □ → □ = √0

 2013 CAS RPM Seminar
 11

11/12

Concluding Remarks

- · See Volume I of the predictive modeling book for details
- More case studies in the Volume II

THE 1 AT 1